Last Lecture:
each broken symmetry \rightarrow massless, spinless Goldstone boson

For a spin zero boson B of four-momentum B_{B}, we have from Lorentz invariance:

$$
\begin{equation*}
\langle V A C| J^{\lambda}(x)|B\rangle=i \frac{F p_{B}^{\lambda} e^{i P_{B} \cdot x}}{(2 \pi)^{3 / 2} \sqrt{2 p_{B}^{0}}} \tag{1}
\end{equation*}
$$

where F is a constant
\rightarrow consistent with current conservation: $P_{\text {Sn }} P_{r 0}^{\lambda}=0$ Further,

$$
\begin{equation*}
\langle B| \phi_{n}(y)|V A C\rangle=\frac{Z_{n} e^{-i P_{B} \cdot Y}}{(2 \pi)^{3 / 2} \sqrt{2 P_{\mathbb{B}}^{*}}} \tag{2}
\end{equation*}
$$

with Zn dimensionless constant.
$(1)+(2)$ then gives:

$$
\begin{aligned}
(2 \pi)^{-3} i p_{n}\left(-p^{2}\right) p^{\lambda} \theta\left(p^{0}\right) & =\int d^{3} p_{B}\langle V A C| J^{\lambda}(0)|B\rangle\langle B| \phi_{n}(0)|V A C\rangle \\
& \times \delta^{4}\left(p-p_{B}\right) \\
& =\delta\left(p^{0}-|\vec{p}|\right)(2 \pi)^{-3}\left(2 p^{0}\right)^{-1} p^{\lambda} i F Z_{n} \\
& =\theta\left(p^{0}\right) \delta\left(-p^{2}\right)(2 \pi)^{-3} p^{\lambda} i F Z_{n},
\end{aligned}
$$

so $\quad \rho_{n}\left(\mu^{2}\right)=F Z_{n} \delta\left(\mu^{2}\right)$

Comparing to the result from last Lecture:

$$
\begin{equation*}
i F Z_{n}=-\sum_{m} t_{n m}\left\langle\phi_{m}(0)\right\rangle_{V A C} \tag{3}
\end{equation*}
$$

For several broken symmetries with generators t_{a} and currents J_{a}^{μ}, we have

$$
\begin{align*}
\langle V A C| J_{a}^{\lambda}(x)\left|B_{b}\right\rangle= & \frac{i F_{a b} p_{B}^{\lambda} e^{i p_{B} \cdot x}}{(2 \pi)^{3 / 2} \sqrt{2 p_{B}^{0}}}
\end{align*},
$$

For instance, in the $O(N)$ example, setting

$$
\bar{\phi}_{m} \equiv\left\langle\phi_{m}(0)\right\rangle_{V A C}=v \delta_{m 1}
$$

\rightarrow the $N-1$ broken symmetry generators t_{a} (with $a=2 \ldots N$) can be defined as rotations in the $1-a$ plane.

$$
\rightarrow \quad\left[t_{a}\right]_{1 a}=-\left[t_{a}\right]_{a_{1}}=i
$$

The N-1 Goldstone bosons transform under unbroken $O(N-1)$ symmetry!

$$
\rightarrow F_{a b}=\delta_{a b} F, Z_{a 1}=0, \quad Z_{a b}=Z \delta_{a b}
$$

Then eq. (4) gives

$$
F Z=v
$$

Convention: $Z=1, F=v$
$\rightarrow F$ is a measure of the strength of the symmetry breaking
We can expand fields ϕ_{n} as follows

Goldstone fields not $\begin{array}{ll}\text { Goldstone } & \begin{array}{l}\text { fields } \\ \text { creating } \\ \text { boson } \\ \text { bosons }\end{array}\end{array}$
From (4) we then have

$$
Z_{a b}=\sum_{b} F_{a b}^{-1}\left(i t_{b} \bar{\phi}\right)_{n}
$$

\rightarrow effective interaction far Goldstone bosons

$$
H_{e f f}=\frac{1}{N!} g_{a_{1}} \ldots a_{N} \pi_{a_{1}} \ldots \pi_{a_{N}}
$$

with

$$
\begin{array}{r}
g_{a_{1} \cdots a_{N}}=\sum_{b_{1} \cdots b_{N}} F_{a_{1} b_{1}}^{-1} \cdots F_{a_{N} b_{N}}^{-1}\left(i t_{b_{1}} \bar{\phi}\right)_{n_{1}} \cdots\left(i t_{b} \Phi\right)_{n_{N}} \\
\times\left.\frac{\partial^{N} V(\phi)}{\partial \phi_{n_{1}} \cdots \partial \phi_{n_{N}}}\right|_{\phi=\bar{\phi}}
\end{array}
$$

\$5.2 Spontaneously broken approximate
Symmetries
Add symmetry breaking perturbation to action:

$$
V(\phi)=V_{0}(\phi)+V_{1}(\phi)
$$

where V_{0} satisfies pert.

$$
\sum_{n m} \frac{\partial V_{0}(\phi)}{\partial \phi_{n}}\left(t_{\alpha}\right)_{n m} \phi_{m}=0
$$

Suppose that $V_{1}(\phi)$ shifts the minimum of of $V_{0}(\phi)$ from ϕ_{0} to $\bar{\phi}=\phi_{0}+\phi_{1}$

$$
\begin{equation*}
\left.\rightarrow \frac{\partial V(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}+\phi_{1}}=0 \tag{1}
\end{equation*}
$$

Suppose both $\phi_{1} \sim O(\varepsilon), V_{1} \sim G(\varepsilon)$ with $\varepsilon \ll 1$
Then we can expand (1) up to lIst order in ε :

$$
\begin{align*}
& \underbrace{\left.\frac{\partial V_{0}(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}}}_{=0}+\left.\left.\sum_{m} \frac{\partial^{2} V_{0}(\phi)}{\partial \phi_{n} \partial \phi_{m}}\right|_{\phi=\phi_{0}} ^{\phi_{1} m}{ }^{+} \frac{\partial V_{1}(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}}=0
\end{align*}
$$

V_{0} and ϕ_{0} satisfy the condition

$$
\left.\sum_{n l} \frac{\partial^{2} V_{0}(\phi)}{\partial \phi_{n} \partial \phi_{m}}\right|_{\substack{ \\\phi=\phi_{0}}}\left(t_{\alpha}\right)_{n e} \phi_{o l}=0
$$

\rightarrow multiplying (1) with $\left(f_{\alpha} \phi_{0}\right)_{n}$ and summing over n gives

$$
\begin{equation*}
\left.\sum_{n}\left(t_{\alpha} \phi_{0}\right)_{n} \frac{\partial V_{1}(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}}=0 \tag{3}
\end{equation*}
$$

Have to make sure eq. (3) is satisfied!
$V_{0}(\phi)$ is invariant under $\phi \rightarrow L \phi$
\rightarrow if ϕ_{*} is minimum, then so is $L \phi_{*}$

Using

$$
\frac{\partial L(\theta)}{\partial \theta^{\alpha}} L^{-1}(\theta)=i N_{\alpha \beta}(\theta) t_{\beta}
$$

where $N_{\alpha \beta}$ is non-singular matrix depending an group parameters θ_{α}
$\longrightarrow V_{1}\left(L(\theta) \phi_{*}\right)$ must have a minimum at some θ_{*} with

$$
0=\left.\frac{\partial V_{1}\left(L(\theta) \phi_{*}\right)}{\partial \theta_{\alpha}}\right|_{\theta=\theta_{*}}=\left.\sum_{n} \frac{\partial V_{1}(\phi)}{\partial \phi_{n}}\right|_{\phi=L(\theta) \phi_{x}} N_{\alpha \beta}(\sigma)\left(i t_{\beta} L(\theta) \phi_{x}\right)
$$

Since $N_{\alpha \beta}$ is non-singular:
(4) $0=\left.\sum_{n} \frac{\partial V_{1}(\phi)}{\partial \phi_{n}}\right|_{\substack{ \\\phi=L\left(\theta_{x}\right) \phi_{*}}} ^{\left(t_{\beta} L\left(\theta_{x}\right) \phi_{*}\right)_{n}}$
\rightarrow to satisfy equation (3) make the choice

$$
\phi_{0}=L\left(\theta_{x}\right) \phi_{*}
$$

"vacuum alignment" condition ensures that the unbroken symmetry remains the same (for example $S O(N-1)$ in $O(N)$-models)
Now consider the mass -matrix

$$
M_{a b}^{2}=\left.\sum_{m n} \tan \operatorname{Z}_{b m} \frac{\partial^{2} V(\phi)}{\partial \phi_{m} \partial \phi_{n}}\right|_{\phi=\phi_{0}+\phi_{1}},
$$

where Han is field renormalization constant. expanding to lIst adder gives:

$$
\begin{equation*}
M_{a b}^{2}=\sum_{m n} Z_{a n} Z_{b m}\left[\left.\sum_{l} \frac{\partial^{3} V_{0}(\phi)}{\partial \phi_{l} \partial \phi_{m} \partial \phi_{n}}\right|_{\phi=\phi_{0}} \phi_{1 l}+\left.\frac{\partial^{2} V_{1}(\phi)}{\partial \phi_{m} \partial \phi_{n}}\right|_{\phi=\phi}\right] \tag{5}
\end{equation*}
$$

(zeroth order term vanishes)
where

$$
Z_{a n}=\sum_{b} F_{a b}^{-1}\left(i t_{b} \phi_{0}\right)_{n}
$$

Contracting with $\left(t_{b} \phi_{s}\right)$ m $\phi_{1 e}$ gives

$$
\begin{align*}
0 & =\left.\sum_{n m l} \frac{\partial^{3} V_{0}(\phi)}{\partial \phi_{l} \partial \phi_{m} \partial \phi_{n}}\right|_{\phi=\phi_{0}} \phi_{1 l}\left(t_{a} \phi_{0}\right)_{n}\left(t_{b} \phi_{0}\right)_{m} \\
& +\left.\sum_{n m} \frac{\partial^{2} V_{0}(\phi)}{\partial \phi_{n} \partial \phi_{m}}\right|_{\substack{ \\
\phi=\phi_{0}}}\left(t_{a} \phi_{l}\right)_{n}\left(t_{b} \phi_{0}\right)_{m} \\
& +\left.\sum_{n e} \frac{\partial^{2} V_{0}(\phi)}{\partial \phi_{n} \partial \phi_{l}}\right|_{\phi=\phi_{0}}\left(t_{a} t_{b} \phi_{0}\right)_{n} \phi_{l e} \tag{6}
\end{align*}
$$

(exercise)
second term vanishes due to $\left.\sum_{n i m} \frac{\partial^{2} V}{\partial \phi_{2} \partial \phi_{2}}\right|_{\phi=\bar{\phi}} ^{t_{n-\bar{\phi}}=0}$ and $\bar{\phi}=\phi_{0}$ here, the third can be re written using eq. (2)
\rightarrow (6) becomes

$$
\left.\sum_{n m l} \frac{\partial^{3} V_{0}(\phi)}{\partial \phi_{e} \partial \phi_{m} \partial \phi_{n}}\right|_{\phi=\phi_{0}} ^{\phi_{1 e}\left(t_{a} \phi_{0}\right)_{n}\left(t_{b} \phi_{0}\right)_{m}=\left.\frac{\partial V_{1}(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}}\left(t_{c} t_{0} \phi_{0}\right)_{n}, ~}
$$

\rightarrow inserting back into (5) gives:

$$
\begin{align*}
M_{c d}^{2}=-\sum_{a b} & F_{c a}^{-1} F_{d b}^{-1}\left[\left.\left(t_{a} \phi_{0}\right)_{n}\left(t_{b} \phi_{0}\right)_{m} \frac{\partial^{2} V_{1}(\phi)}{\partial \phi_{m} \partial \phi_{n}}\right|_{\phi=\phi_{0}}\right. \\
& \left.+\left.\left(t_{a} t_{b} \phi_{0}\right)_{n} \frac{\partial V_{1}(\phi)}{\partial \phi_{n}}\right|_{\phi=\phi_{0}}\right] \quad(z) \tag{7}
\end{align*}
$$

\rightarrow small but nonzero mass "pseudo Goldstone bosons"

Let's check that (7) gives a positive mass:
One can derive

$$
M_{a b}^{2}=\sum_{c d \alpha \beta} N_{a \alpha}^{-1}\left(\theta_{x}\right) N_{b \beta}^{-1}\left(\theta_{*}\right) F_{a c}^{-1} F_{b d}^{-1} \underbrace{\left.\frac{\partial^{2} V_{1}\left(L(\theta) \phi_{*}\right)}{\left.\partial \theta_{\alpha} \partial \theta\right)}\right|_{\theta=\theta}}_{20}
$$

as θ_{*} is at minimum of $V_{1}\left(L(\theta) \phi_{*}\right)$
To see this, compute

$$
\left.\frac{\partial^{2} V_{1}\left(L(\theta) \phi_{*}\right)}{\partial \theta_{\alpha} \partial \theta_{\beta}}\right|_{\theta=\theta_{k}}=\frac{\partial}{\partial \theta_{\beta}}\left[\left.\sum_{n} \frac{\partial V_{1}(\phi)}{\partial \phi_{n}}\right|_{\phi=L(\theta) \phi_{*}} N_{\alpha \gamma}(\theta)\left(i t_{\delta} L(\theta) \phi_{*}\right)_{n}\right]_{\theta_{\theta=\theta}}
$$

and set $\phi_{0}=L\left(\theta_{*}\right) \phi_{k}$

